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Abstract. The main purposes of a clarifier-thickener unit is that it should produce a high underflow concentra-
tion and a zero effluent concentration. The main difficulty in the control of the clarification-thickening process
(by adjusting a volume flow) is that it is nonlinear with complex relations between concentrations and volume
flows via the solution of a PDE – a conservation law with a source term and a space-discontinuous flux func-
tion. In order to approach this problem, control objectives for dynamic operation and strategies on how to meet
these objectives are presented in the case when the clarifier-thickener unit initially is in steady state in optimal
operation and is subjected to step input data. A complete classification of such solutions is given by means of
an operating chart (concentration-flux diagram).
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1. Introduction

The process of continuous sedimentation of particles in a liquid has received considerable atten-
tion during the last century. There are many publications ranging from experiments to rigorous
mathematical modelling. For many purposes simplified one-dimensional models are mostly con-
sidered and desired for simulation, control and design of plants. We refer to the preceding papers
in this series [1, 2] for references and discussions of previous works. For the particular problem
of controlling the process, different angles of approach can be found in [3–9].

The one-dimensional model for an ideal clarifier-thickener can be written as a partial
differential equation that conserves mass (conservation law). Different types of modelling
problems arise. One is the settling and compressible behaviour of the particles, reflected in
the constitutive relation between the settling flux (mass per unit of time and unit area) and
the concentration and other physical variables. Other problems are the mathematical difficul-
ties that arise due to the discontinuities of the flux function at the inlet and outlets of the
sedimentation vessel. In [1, 2] it was motivated why it is important to continue to examine
all consequences of the fundamental constitutive assumption by Kynch, although it does not
take into account the compressible behaviour for high concentrations shown by many suspen-
sions. A further motivation for the present paper is that a systematic analysis of the control
possibilities and limitations of the process cannot be found in the literature.

The aim of the present series of articles is to provide deeper knowledge of the continuous-
sedimentation process for all possible input data and to show how the process can be con-
trolled. This is done by classifying the nonlinear behaviour by means of operating charts. In
[1] all qualitatively different steady-state solutions and several relations between the different
variables were presented. Control objectives were also suggested. Since the process is hardly
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ever in complete steady state, it is not sufficient to have control objectives formulated only
in terms of steady-state solutions. In [2] the state of optimal operation was defined as a class
of dynamic solutions. Furthermore, all qualitatively different step responses were classified for
the case when the settler is in optimal operation initially and the control variable (the volume
underflow rate) is held constant. The same initial conditions are assumed in the present paper
and all theoretically possible step inputs are considered. In addition, the control variable is
now adjusted.

The paper is organized as follows. Sections 2 and 3 contain the necessary previous results
and notation. Control objectives for dynamic solutions are formulated in Section 4 and strat-
egies on how to satisfy these are introduced in Section 5. A control strategy is called optimal
if the given control objective is satisfied. To establish optimal control strategies, the first step
is to investigate dynamic solutions when there is a direct control action (a step change in the
control variable). These solutions are presented and classified in Section 6. Although the value
of the control variable in each case corresponds to a desired steady-state solution, the control
objectives are not satisfied in all cases. Hence, more advanced control strategies are needed to
meet the control objectives. The main results of the paper are the optimal control strategies
presented in Section 7.

2. The clarifier-thickener unit and the model

The one-dimensional model of the clarifier-thickener unit, or settler, was first presented in [10].
The model and the full notation for constructing solutions are given in [2, Section 2], to which
we now refer the reader. Here, we review only briefly the basic concepts. Although we refer to
analytical solutions of the model partial differential equation, the paper can be read without
going into such details and by studying the operating charts and numerical solutions instead.

Figure 1 shows the settler together with the flux function in the thickening zone. The typ-
ical and desired steady-state solution has zero concentration in the clarification zone and a

Figure 1. Left: Schematic picture of an ideal one-dimensional clarifier-thickener unit, where u stands for concen-
tration and Q for volume flow of the feed, effluent and underflow streams, respectively. The flow restrictions are
Qf = Qe + Qu > 0 and Qe ≥ 0. Right: flux curves f (u) in the thickening zone and characteristic concentrations.
The bulk velocities are defined as qu = Qu/A etc., where A is the cross-sectional area. For q̄u < qu < ¯̄qu there is
a local minimum point uM of f (u) that lies between uinfl and umax. Given uM, um is the lower concentration
defined by f (um)=f (uM), uM is the (local) maximum point of f (u), uinfl is the inflection point of fb(u) and f (u)

(independent of qu). The batch-settling flux used for the numerical simulations is fb(u)=10u
(
(1−0·64u/umax)

6·55 −
0·366·55

) [
kg/(m2h)

]
.



Operating charts for continuous sedimentation III 227

discontinuity in the thickening zone between the concentrations um and uM. This is called the
sludge blanket level (SBL) in wastewater treatment and it is important to be able to control
it. The conservation law can be written as the partial differential equation

ut +
(
F(u, x)

)
x
= s(t)δ(x), (1)

where δ is the Dirac measure, the total flux function is

F(u, x)=






−qeu, x <−H

g(u)=fb(u)−qeu, −H <x <0

f (u)=fb(u)+quu, 0<x <D

quu, x >D

and the source function is

s(t)= Qf

A
uf (t)= Qu +Qe

A
uf (t)= (qu +qe)uf (t).

The physical input variables are the feed concentration uf and the feed volume flow Qf . For
graphical interpretations by means of operating charts it is, however, convenient to use the
feed point (uf , s) as input variable. The control variable of the process is Qu. Two particular
values of this variable arise from the properties of the batch-settling flux function. Define

q̄u =−f ′
b(umax), Q̄u = q̄uA,

¯̄qu =−f ′
b(uinfl), ¯̄Qu = ¯̄quA,

which are the bulk velocities such that the slope of f is zero at umax and uinfl, respectively;
see Figure 1 (right).

The purposes of the settler may vary depending on the industrial process it is used for. At
least in wastewater treatment the main purposes of the settler are the following. It should

1. produce a low effluent concentration;
2. produce a high underflow concentration;
3. work as a buffer of mass and be insensitive to small variations in the feed variables.

These purposes cannot be controlled independently.

3. Control of steady states and optimal operation

Figure 2 shows the operating chart for the steady states. Depending on the location of the
feed point (uf , s) in the steady-state chart, there are different possible steady-state solutions,
which are all piecewise constant and non-decreasing with depth; see [1] for a complete table
and a full notation. The limiting flux and the excess flux are defined as:

flim(u)= min
u≤α≤umax

f (α)=
{

f (u), u∈ [0, um]∪ [uM, umax],

f (uM), u∈ (um, uM),

E(uf , s)= s −flim(uf ).

These fluxes, as well as the characteristic concentrations and the regions of the steady-
state chart depend on the control variable Qu; e.g. uM(Qu), f (u,Qu), flim(uf ,Qu) and
E(uf , s,Qu). The following regions in the operating chart are independent on Qu:

�i=
⋃

Qu>0

�i(Qu), i =1, . . . ,4,
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Figure 2. The steady-state chart. The thick graph is the limiting flux curve. If the feed point lies on this curve, the
settler is critically loaded in steady state, which means that it works at its maximum capacity. Below this graph the
settler is underloaded, and above it is overloaded with a non-zero effluent concentration. Each region corresponds
to a specific steady state which is unique, except on the limiting flux curve (and on �3 and �5), where the location
of a discontinuity in the thickening and/or the clarification zone is not uniquely determined. Note that the regions
in this chart all depend on Qu. (They are defined in [1].)

P=P1 ∪P2, where P1 =
⋃

0<Qu≤ ¯̄Qu

p(Qu), P2 =
⋃

Qu> ¯̄Qu

p(Qu);

see Figure 3 (right). In [1] some control objectives are formulated in order to meet the purposes
stated in Section 2. It turns out that it is important to be able to have a critically loaded settler
in steady state, i.e., to find a value of Qu such that E(uf , s,Qu)= 0. The following theorem in
[1] captures the most important properties in this context.

Theorem 3.1. Given (uf , s)∈
{
(u, y) :0<u≤umax, y >0

}
, there exists a unique Q̃u(uf , s)>0 such

that E(uf , s, Q̃u)=0 and the following properties hold:

(uf , s)∈�i �⇒ (uf , s)∈�i(Q̃u), i =1,2,4,

(uf , s)∈P �⇒ (uf , s)∈p(Q̃u),

Figure 3. Operating charts for control of steady states. Left: Graphs of flim(·,Qu) for some values of Qu. Right:
The control chart with respect to steady states; �3 =�3a ∪�3b, �4 =�3 ∪�′. Theorem 3.1 says that, given a feed
point in this chart, there is a unique graph flim(·, Q̃u) that passes through the feed point. With the value Q̃u the
settler is critically loaded in steady state.
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Q̃u is a continuous function on �,

E(uf , s,Qu)≤0 ⇐⇒ Qu ≥ Q̃u(uf , s).

If (uf , s)∈�3, there exists a unique Qu >0 with (uf , s)∈�3(Qu).

Choosing the particular value Qu = Q̃u ⇔ E(uf , s, Q̃u) = 0 will thus yield a critically loaded
settler. It can be shown that the maximum value of the underflow concentration is

ũu(uf , s)= As

Q̃u(uf , s)
, (2)

which is a decreasing function of s for all s >q̄uumax and uf <umax. For s ≤ q̄uumax, ũu(uf , s)=
umax holds.

Consider the last statement of Theorem 3.1. For Qu ≥ ¯̄Qu, we have um =uM =uinfl and the
sludge blanket deteriorates. Therefore, we divide �3 into

�3a =�3 ∩{
(u, y) :y <fb(uinfl)+ ¯̄quuinfl

}
and �3b =�3 \�3a; (3)

see Figure 3 (right).
The concept of optimal operation in steady state means that the concentration is zero in

the clarification zone and there is a (stationary) discontinuity within the thickening zone at
the depth x =xsb ∈ (0,D) – the sludge blanket level (SBL). Optimal operation in steady state
is one of the main control objectives discussed in [1] and it satisfies the third purpose of the
settler above.

A necessary condition for optimal operation in steady state is that (uf , s) ∈ p(Qu) ∪
�2(Qu) ∪ �3(Qu) and Qu < ¯̄Qu, which implies (uf , s) ∈ P1 ∪ �2 ∪ �3a; see Figure 3. Sufficient
conditions for obtaining this state asymptotically involve the values of the input variables and
the control variable, as well as the present concentration distribution. To obtain such con-
ditions the dynamic behaviour needs to be charted. Since the continuous-sedimentation pro-
cess is hardly ever in complete steady state, it is not sufficient to have control objectives only
formulated in terms of steady-state solutions. Therefore, we also need a general definition of
optimal operation. Let ucl denote the restriction of the solution u to the clarification zone.

Definition 3.1. The settler is said to be in optimal operation at time t if Qu(t)< ¯̄Qu and the
solution of (1) satisfies:
• ucl(x, t)=0⇔u(x, t)=0, −H <x <0,
• there exists a level xsb(t)∈ (0,D) such that

u(x, t)∈
{

[0, uinfl), 0<x <xsb(t)

[uinfl, umax], xsb(t)<x <D.

Hence, we have a natural definition of the SBL for a settler in optimal operation: it is the
discontinuity at the level x =xsb(t) in the thickening zone, such that the jump in the concen-
tration passes the characteristic concentration uinfl.

4. Control objectives

The three purposes of the settler in Section 2 can be written in terms of the solution of (1),
namely the two output concentrations and the concentration distribution in the settler:
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Table 1. Control objectives. For each control objective the first condition should be maintained as long
as possible. After that, the next condition should be met as long as possible, etc.

Objective 1st condition 2nd condition 3rd condition

CO1 Optimal operation ucl =0
CO2 Optimal operation uu ≥umin

u subject to ue =0 ue =0
CO3 Optimal operation subject to uu ≥umin

u uu ≥umin
u subject to ue =0 ue =0

CO4 uu is maximized subject to ue =0

1. ue(t)=0;
2. uu(t) is maximized or bounded below;
3. the settler is in optimal operation.

With our definition of optimal operation, purpose 1 is a subset of purpose 3. As regards
steady-state situations, we know from [1] that purpose 2 is fulfilled as Qu is minimized. Pur-
pose 1, on the other hand, is satisfied as Qu is sufficiently high. The boundary case, in which
purposes 1 and 2 are fulfilled, is when the settler is critically loaded in steady state, which can
always be attained according to Theorem 3.1. Optimal operation is also an intermediate state;
however, it is not equivalent to a critically loaded settler. The extra advantages of purpose 3
are the buffer and robustness properties of the settler.

As we shall see, for high loads optimal operation cannot be maintained infinitely long.
Therefore, given a lower bound umin

u on the underflow concentration, we define the control
objectives in Table 1. When optimal operation cannot be maintained, a second condition
comes into effect, and if this can only be satisfied during a finite time, a third condition
takes effect. Thereby, all four objectives can always be met (with the natural interpretation
Qu =Qf ⇔Qe = 0 means that ue = 0). In CO4, particles are allowed in the clarification zone
at any time, but in CO2 and CO3 only upon failure of optimal operation. This limits the
mass-buffer property of the settler and increases the risk of an overflow due to disturbances.
Thus, there are major disadvantages with CO4 in comparison to the other objectives. CO4
can only be ‘advantageous’ during transient periods in the sense that uu(t) may be slightly
higher than its maximum value in steady state, ũu (see Equation (2)). Therefore, we do not
consider CO4 in this paper. Note that CO3 is the same as CO2 plus the constraint that uu(t)

is always bounded from below. This can be described a priori in terms of the control variable
during favourable conditions; see Theorem 4.1 and Figure 4.

Theorem 4.1. Assume that the settler is in optimal operation for 0≤ t ≤T .
• The underflow concentration satisfies uu(t) ∈ (

¯̄uu, umax
]

for 0 ≤ t ≤ T , where ¯̄uu =
f (uinfl, ¯̄Qu)/ ¯̄qu.

• Let umin
u ∈ ( ¯̄uu, umax) be a given desired lower bound on the underflow concentration. Assume

that Qu(t)≤Qmax1
u , where Qmax1

u is defined1 uniquely by

f
(
uM(Qmax1

u ),Qmax1
u

)= Qmax1
u

A
umin

u .

Then uu(t)≥umin
u for 0≤ t ≤T and Qmax1

u >Q̄u.

1The notation Qmax
u will be used, in the subsequent paper in this series, for a more general upper

bound of the control variable in connection with a regulator.
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Figure 4. The characteristic concentrations of
Theorem 4.1 can be obtained graphically in
the operating chart for control of steady states.
¯̄uu ≈ 7·13 kg/m3 satisfies f (uinfl, ¯̄Qu) = ¯̄qu

¯̄uu. Qmax 1
u

can be obtained graphically in the following way.
Given umin

u ∈ ( ¯̄uu, umax
]

determine the corresponding
y-value on the boundary of �3 and �′. This flux
value is equal to Qmax 1

u umin
u /A.

Figure 5. The sets L1 and L3. Note that the feed
point lies on the line y =quu if and only if Qe =0⇔
Qu =Qf .

Proof. The definition of optimal operation means that Qu ∈ (0, ¯̄Qu) and that, for every fixed
t ∈ [0, T ], the limit bottom concentration satisfies uD ≡u(D −0, t)∈ [uinfl, umax]. The boundary
limit given by [2, Equation (6)] implies uD(t)≡ limε↘0 uD(t +ε)∈ [

uM(Qu), umax
]
. The under-

flow concentration is then given by [2, Equation (8)]:

uu(t)= f
(
uD(t)

)

qu
=uD(t)+ Afb

(
uD(t)

)

Qu
, (4)

which defines a continuously differentiable function uu(uD,Qu) for fixed t . We have

∂uu

∂uD
=1+ Af ′

b(uD)

Qu
= Qu

A
f ′(uD)≥0, uD ∈ [

uM(Qu), umax
]
.

Hence, for each Qu ∈ (0, ¯̄Qu),

min
uD∈[uM(Qu),umax]

uu(uD,Qu)=uu
(
uM(Qu),Qu

) (4)= uM(Qu)+ Afb
(
uM(Qu)

)

Qu
.

We investigate the latter relation between uu and Qu. For 0<Qu ≤ Q̄u we have

uu
(
uM(Qu),Qu

)=uu(umax,Qu)=umax + Afb(umax)

Qu
=umax.

For Q̄u <Qu < ¯̄Qu we can use the fact that
d

dQu

f
(
uM(Qu),Qu)

)=uM(Qu)/A<umax/A, see

(A2) in [1], to conclude that

d
dQu

uu
(
uM(Qu),Qu

)=− A

Q2
u
f

(
uM(Qu),Qu)

)+ A

Qu

d
dQu

f
(
uM(Qu),Qu)

)=

= A

Q2
u

(
−f

(
uM(Qu),Qu)

)+ Qu

A
uM(Qu)

)
=−Afb

(
uM(Qu)

)

Q2
u

<0.
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Thus, the continuous function uu
(
uM(Qu),Qu

)
of Qu is decreasing for Q̄u ≤Qu < ¯̄Qu taking

all values from umax down to

uu
(
uM( ¯̄Qu), ¯̄Qu

)=uu
(
uinfl, ¯̄Qu

)=uinfl + Afb(uinfl)

¯̄Qu

= f (uinfl, ¯̄Qu)

¯̄qu
= ¯̄uu.

Hence, for given umin
u ∈ ( ¯̄uu, umax) there exists a unique value Qmax1

u >Q̄u such

umin
u =uu

(
uM(Qmax1

u ),Qmax1
u

)=uM(Qmax1
u )+ Afb

(
uM(Qmax1

u )
)

Qmax1
u

,

which after multiplying by Qmax1
u /A finishes the proof.

5. Control strategies

Assume that the feed point
(
uf (t), s(t)

)
moves around, continuously and/or discontinuously,

in the operating chart. To fulfil any control objective, control strategies need to be specified,
which means that Qu is defined as a function of the feed point and time. By a control action
we mean a relation between Qu and (uf , s) at a fixed time point. In order to propose control
strategies we define the following subsets, or lines, in the operating chart:

L1 =
3⋃

i=1

�i ∪p ∪
{
(u, y) :y =quu,

f (uM)

qu
<u≤umax

}
,

L2 ={
(u, y) :y =flim(u)

}=�1 ∪p ∪�2 ∪�4,

L3 ={
(u, y) :y =f3(u)

}
where f3(u)=






f (u), 0≤u≤uM

f (uM), uM <u≤ f (uM)
qu

quu,
f (uM)

qu
<u≤umax.

Note that these sets depend on Qu, for example, (uf , s)∈L2(Qu) means that the settler is criti-
cally loaded in the corresponding steady state. L1 and L3 are shown in Figure 5. Some control
strategies are the following:

DCL1: direct control with respect to L1, i.e., define Qu(t) such that
(
uf (t), s(t)

)∈L1
(
Qu(t)

)
;

DCL2 and DCL3 are defined analogously;
PCC: piecewise constant control of Qu(t) where decisions are made depending both on the

location of the feed point in the operating chart and the actual concentration distribution
in the settler, especially the SBL.

Thus, for the step inputs in this paper, DC means that a single step control action is per-
formed at t =0. Omitting the initials DC means that the control action is performed at a later
time point. Strategy DCL2 is motivated by the results on the control of steady states in [1]
and can always be accomplished according to Theorem 3.1. With a small adjustment of the
proof of that theorem, it is easy to establish that strategies DCL1 and DCL3 can always be
accomplished with a unique value of Qu for each given feed point. It is convenient to use
the notation Qu =L−1

1 (uf , s)⇔ (uf , s)∈L1(Qu), etc. Strategy DCL1 is equal to DCL2 for feed
points in P ∪�2. For (uf , s)∈�3 ⊂�4 there is a choice between making a control action with
respect to a critically loaded settler, Qu = �−1

4 (uf , s), which is DCL2, and setting the slightly
higher value Qu =�−1

3 (uf , s), which is DCL1 and aims at keeping the state optimal operation
as long as possible. If (uf , s) ∈ �′, there are similarly two alternatives. As we shall see later,
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optimal operation can, however, only be maintained during a finite time in the correspond-
ing steady state.

In Section 6 we show that DCL1 is better than DCL2 with respect to CO1 for the control
of step responses. An advantage of DCL1 and DCL2 over PCC is that these ignore the pres-
ent concentration distribution in the settler. A drawback of DCL2 (and similarly for DCL1)
is that Qu(t) is only implicitly defined by the nonlinear equation E(uf , s,Qu)=0, which gen-
erally has to be solved numerically for Qu = Q̃u. In practice it may also take some time to
realize a new flow value. Therefore, these strategies cannot be realized exactly. The simplicity
of the strategy PCC – adjust the control parameter only at certain time points and keep it
constant in between – is obvious and in many waste-water treatment plants the only possibil-
ity in practice. In Section 7 the strategy PCC will be specified further concerning the control
of step responses. As we shall see, this strategy is sufficient for fulfilling CO1 or CO2 and the
strategies DCL2 and DCL1 may actually be disadvantageous. The use of strategy DCL3 is
also demonstrated in Section 7.

6. Direct control of step inputs

6.1. Operating chart for direct control of step inputs

Assume that the settler is in optimal operation and steady state initially, that there is a step
change at t = 0 in the feed variables, and that these are constant thereafter. In this section
we present the solution to a single-step control action which is performed directly. Since we
aim at a stationary settler in optimal operation, only the control actions DCL1 and DCL2
will be considered in this section. The advantage of DCL1 over DCL2 will be emphasized in
Sections 6.3, 6.5 and 6.7. It turns out that the qualitatively different cases depend on the un-
derloaded region, denoted by U =U1 ∪ �3 ∪U2, the overloaded region, O =O1 ∪ �5 ∪O2 ∪O3,
and on the control chart in Figure 3 (right). In the latter the set �′ now has to be divided
further depending on whether s ≶ f (uM) after the control action DCL1. Since the value of
the control variable can be written in terms of the feed variables, Qu =Qf =As/uf , the set �′

can be divided beforehand:

�′
a =

{
(u, y)∈�′ :y ≤f

(
uM(Ay/u);Ay/u

))}
,

�′
b =�′ \�′

a;

see Figure 6, where these sets are shown (above the line y =quu). This means that the inter-
section of the line y =quu and the dividing curve between �′

a and �′
b occurs at the height of

the local maximum of f , i.e., f (uM).
As for the construction of solutions, we omit many details as well as some auxiliary fig-

ures of flux functions. The principles have been demonstrated in the previous paper [2]. The
index 0 denotes the value of a variable at t =0−. Recall that the time-dependent variables are
defined to be continuous from the right, for example, uf0 =uf (0−) �=uf (0+)=uf (0). Variables
written without the zero index correspond to constant values in the new steady state, which
may arise after a finite or infinite time. Since the control parameter makes a jump at t = 0
from Qu0 to Qu, we need to differentiate between the initial flux f0(·)≡f (·;Qu0) and the new
one f (·)≡f (·;Qu). For variables that vary continuously during the transient period, or some
part of it, the time dependence is written out, for example, m(t) or ue(t). Their values in the
new steady state are then written out explicitly, for example, m(t5) is the constant mass for
t ≥ t5, and we write ue∞ for an asymptotic value.
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6.1.1. Initial conditions
The settler is initially in optimal operation at steady state, i.e., the feed point (uf0, s0)∈p∪�2 ∪
�3, there is zero concentration in the clarification zone and a sludge blanket in the thickening
zone at the depth xsb0 with the concentration um0 above and uM0 below it. The total mass in
the settler is thus initially

m0 =A
(
xsb0um0 + (D −xsb0)uM0

)
. (5)

6.1.2. Numerical data and simulations
The following numerical data are used throughout the paper:

H =1 m, umax =10 kg/m3,

D =4 m, uinfl =4·15 kg/m3,

A=π(30 m)2 =2827 m2, xsb0 =2 m (unless otherwise stated).

Note that the initial mass depends on the values of um0 and uM0, which depend on Qu0 =
Qu. The latter variable is, for clarity, set to different values in the different cases below, which
means that the initial mass is different, too. We only show the interesting cases when Qu <
¯̄Qu = 5161 m3/h; cf. Figure 3 (left). The batch-settling flux fb(u) used is shown in Figure 1

(right). The three-dimensional graphs are obtained by the numerical method described in [11].
Unless otherwise stated, the initial data are

Qu0 =3500 m3/h, s0 =9·86 kg/(m2h),

um0 =1·61 kg/m3, uM0 =6·16 kg/m3,

uu0 =7·96 kg/m3, um0 <uf0 ≤uM0;

cf. Figure 7. In the cases below we thus assume that s0 >q̄uumax = 1·45 kg/(m2h). Otherwise,
uM0 = uu0 = umax and some of the inequalities become equalities. In all cases in this section
the effluent concentration is zero. We do not show simulation graphs of this or the evolution
of the mass.

Figure 6. The operating chart for direct control of
step inputs shows the regions (within the solid lines)
of the qualitatively different solutions. The sets refer
to the initial value Qu0, i.e., O ≡O(Qu0) etc. Recall
that P1 ∪P2 =P .

Figure 7. (uf , s) = (2·5,6·0) ∈ U1(Qu0) ∩ �2. The
graphs of the initial flux f0(·) ≡ f (·;Qu0) and the
new one f (·)≡f (·;Qu).
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6.2. (uf , s)∈U1(Qu0)∩ (P ∪�2)

Suppose the new feed point is (uf , s) = (2·5,6·0) ∈ U1(Qu0) ∩ �2; see Figure 7. According to
DCL1 = DCL2 we let Qu = Q̃u ≈ 1908, which implies (uf , s) ∈ �2(Qu). As we shall see, the
settler will be kept in optimal operation. The graphs of the initial and the new flux functions
for the thickening zone are shown in Figure 7 together with some concentrations that appear
in the solution. According to Condition 	 the boundary values are u−(t)=0, u+(t)=um and
uD(t)=uM for t ≥0. The solution is shown in Figure 8. (The slopes of the characteristics with
the concentration um between x1 and x2 may be zero or negative if Qu0 is high and Qu low,
i.e., um0 lies at or to the right of uM.) The underflow concentration changes immediately from
the initial value uu0 =7·96 to the new value uu =8·89. There is an expansion wave at the bot-
tom below the line of continuity x3 = f ′(uM0)t + D, along which the concentration is uM0.
The line x1 is a contact discontinuity with the speed

x′
1(t)=Sf (um0, uM0)=Sf (um0, um0

∗)=f ′(uM0),

since um(Qu)∗ = uM(Qu) for all values of Qu ([2, Lemma 2.2]); see the long-dashed line in
Figure 7. Hence, x1 and x3 are parallel straight lines. The discontinuities satisfy

x1(t)=f ′(uM0)t +xsb0, 0<t <t1,

x2(t)=Sf (um0, um)t, 0<t <t1,

x4(t)=Sf (um, uM0)t +x1(t1), t1 <t <t2,

where

t1 = xsb0

Sf (um0, um)−f ′(uM0)
, t2 = D −x1(t1)

Sf (um, uM0)−f ′(uM0)
.

The example data we use here give t1 ≈29 min and t2 ≈3·6 h. There is an expansion wave at
the bottom and x5 approaches the final SBL xsb asymptotically, since the concentration below
the SBL approaches uM asymptotically.

Because of the monotonicity property of ũu(uf , s), defined by (2), the new underflow con-
centration satisfies

uu =
{

ũu(uf , s)> ũu(uf0, s0)=uu0, s > q̄uumax,

uu0 =umax s ≤ q̄uumax.

The mass in the settler is unchanged. This is because of the immediate change to the new
constant underflow concentration by Condition 	. The outgoing flux = Quuu/A = f (uM) =

Figure 8. Solution of a response to DCL1 as (uf , s)∈U1(Qu0)∩�2(Qu).



236 S. Diehl

Figure 9. The solid line shows the relation (6); xsb = 0·67xsb0 + 0·84 m. For example, xsb0 = 2 m gives xsb = 2·18 m,
cf. Figure 10. The fixed point under the control action is x̄ =2·53 m.

s = incoming flux. Equating the expression for the mass in the settler at t =0, (5), and its ana-
logue as t →∞, we get the following linear relationship between the new location of the SBL
and the initial one (see Figure 9):

xsb = xsb0(uM0 −um0)+D(uM −uM0)

uM −um
. (6)

The properties

xsb →D
uM −uM0

uM −um
>0 as xsb0 →0,

xsb →D
uM −um0

uM −um
<D as xsb0 →D,

imply, firstly, that there is a unique level, a fixed point of (6),

x̄ ≡ D

1+ um0−um
uM−uM0

,

which satisfies xsb0 = x̄ = xsb and, secondly, that the control action has a stabilizing effect on
the SBL in the sense that xsb lies closer to x̄ than xsb0 does; cf. Figure 9. If s0 ≤ q̄uumax,
then xsb = 0. Compare the numerical values in the text above with the numerical simulation
in Figure 10.

6.3. (uf , s)∈U1(Qu0)∩�3

Note that the solution in Figure 8 does not depend on the new value of the feed concentra-
tion uf . Following the control strategy DCL1, we can find a value Qu <Qu0 such that (uf , s)∈
�3(Qu). Then the solution is qualitatively the same as in the previous case U1 ∩�2, but with
f closer to f0; see Figure 11 (left) and a simulation in Figure 12.

As a comparison we show in Figure 13 the solution when the slightly lower value Qu =
Q̃u = 3226 is chosen according to DCL2, which implies (uf , s)= (7·5,9·5)∈U1(Qu0)∩ �4(Q̃u);
see Figure 11 (right). There will not be any sludge blanket in the new steady state, which
arises after a finite but long time. The solution will initially be as in Figure 8 with the concen-
tration um replaced by u1 ∈ (um, um0), satisfying s =f (u1). Note that s is now slightly greater
than f (um)=f (uM). There is a small expansion wave emanating from the bottom. Its slow-
est rising discontinuity carries the concentration u∗

1 ∈ (uM0, uM). After this has met the rising
sludge blanket (cf. the discontinuity x5 in Figure 8), the speed of the sludge blanket stays at
the constant and slightly negative value x′

5(t)=Sf (u1, u
∗
1)=f ′(u∗

1). Hence, it rises slowly until
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Figure 10. Numerical simulation of a response to DCL1 as (uf , s) = (2·5,6·0) ∈ U1(Qu0) ∩ �2(Qu = 1908). Note the
jump in the underflow concentration at t =0.

Figure 11. (uf , s) = (7·5,9·5) ∈ U1(Qu0) ∩ �3. DCL1: Qu = �−1
3 (uf , s) = 3337 (left). DCL2: Qu = �−1

4 (uf , s) = 3226
(right).

it reaches the feed level. After that time point the new boundary concentration just below the
feed level is uf (>uM) and this concentration is slowly spread all over the thickening zone. At
this time point the underflow concentration makes a step increase from f (uM)/qu to s/qu and
the new steady state begins.
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Figure 12. Numerical simulation of a response to DCL1; (uf , s)= (7·5,9·5)∈U1(Qu0)∩ �3(Qu =3337). The settler is
kept in optimal operation.
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Figure 13. Numerical simulation of a response to DCL2; (uf , s)= (7·5,9·5)∈U1(Qu0)∩�3 ∩ �4(Qu = 3226). Initially,
the solution is similar to the one in Figure 12, however, with a rising SBL instead. Optimal operation is left at
about 39 hours.

6.4. (uf , s)∈ (
�1(Qu0)∪U1(Qu0)

)∩�1

The set is represented by a narrow strip in the control chart; see Figure 6. Choosing Qu =
Q̃u according to DCL1 = DCL2, we obtain a solution that initially (before t2) looks like the
one shown in Figure 8 with the concentration um replaced by uf . Note that s =f (uf ) is now
less than f (uM1), where uM1 is the new bottom concentration at t =0+; see Figure 14. This
implies that the discontinuity x5, the SBL, has positive speed varying from Sf (uf , uM0) (dur-
ing t1 < t ≤ t2) to the slightly lower value Sf (uf , uM1) as it reaches the bottom. At this time
point the underflow concentration makes a step decrease from f (uM1)/qu to f (uf )/qu = s/qu.
A numerical simulation in the case (uf , s)= (1,7·5) and Q̃u =2907 is shown in Figure 15.
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Figure 14. The feed point and fluxes in the case (uf , s)= (1,7·5)∈U1(Qu0)∩�1(Qu =2907).
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Figure 15. Numerical simulation of a response to DCL1 as (uf , s) = (1,7·5) ∈ U1(Qu0) ∩ �1(Q̃u = 2907). Note the
jump in the underflow concentration at t =0. Optimal operation is left at t =11·6 h.

6.5. (uf , s)∈ (O(Qu0)∪�4(Qu0)∪U2(Qu0)
)∩ (P ∪�2 ∪�3)

For the numerical demonstration we assume that (uf , s) = (3,11·5) ∈ O(Qu0) ∩ �2; see
Figure 16. According to DCL1 we let, at t = 0, Qu = �−1

2 (uf , s) = Q̃u ≈ 4298 and hope that
the settler stays in optimal operation. In fact, if the feed point were located in �3a, we would
obtain qualitatively the same solution when choosing Qu = �−1

3 (uf , s). If (uf , s) ∈ �3b ∪ P2,
then, with Qu = Q̃u, the solution is qualitatively the same as the one presented here, but
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Figure 16. The feed point and flux functions in the case (uf , s)= (3,11·5)∈O(Qu0)∩�2(Qu =4298).

Figure 17. Solution of a response to DCL1 as (uf , s)∈O(Qu0)∩�2(Qu). Note the jump in uu(t) at t =0.

degenerate in the sense that um =uM =uinfl. Furthermore, the settler leaves optimal operation
directly since Qu ≥ ¯̄Qu.

We consider first the case when the initial SBL is not too close to the bottom; see
Figure 17. Note that the characteristics below x5 all emanate from the contact discontinuity
x3 (cf. [2, Equation (15)]). We have

x1(t)=Sf (um0, uM0)t +xsb0 =f ′(uM0)t +xsb0, 0<t <t2,

x2(t)=f ′(um0)t, 0<t <t1,

x4(t)=f ′(um)t, 0<t <τ1,

from which we obtain

t1 = xsb0

f ′(um0)−f ′(uM0)
, t2 = D −xsb0

f ′(uM0)
.

The underflow concentration makes a jump at t =0 down to uu1 and after t = t2 it decreases
continuously to its asymptotic value uu∞. The initial, intermediate and asymptotic underflow
concentrations satisfy

uu0 = f0(uM0)

qu0
=uM0 + Afb(uM0)

Qu0
>

uu1 = f (uM0)

qu
=uM0 + Afb(uM0)

Qu
>

uu∞ = f (uM)

qu
=uM + Afb(uM)

Qu
,
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where the first inequality follows directly from the fact that Qu >Qu0 and the second follows
indirectly from this fact, since uM(Qu) is a decreasing function of Qu for Qu < ¯̄Qu (⇔uM >uinfl)
and fb(u) is decreasing for u>uinfl. The mass decreases according to

m(t)=
{

m0 + t (As −Quuu1), 0≤ t ≤ t2

m0 + t2(As −Quuu1)+ ∫ t

t2

(
As −Quuu(τ )

)
dτ, t ≥ t2,

where we note that As =Quuu∞ <Quuu(τ ) ∀τ ≥ t2.
Since the contact discontinuity x3(t) can only be obtained numerically generally, there is

neither an explicit expression for τ1 nor for the new SBL, xsb = x5. The latter constant lies
between x1(t1)=x2(t1) and the intersection of x1 and a prolongation of x4, which occurs at

τ2 ≡ xsb0

f ′(um)−f ′(uM0)
>τ1. (7)

Hence, we have the following estimate for the new SBL:

xsb0

1−f ′(uM0)/f
′(um0)

=x1(t1)<xsb <x1(τ2)= xsb0

1−f ′(uM0)/f
′(um)

. (8)

The asymptotic relationship between the mass and the new sludge blanket level, m∞ =
A

(
uMD −xsb(uM −um)

)
, can then be used to estimate the new mass.

Numerical values corresponding to Figure 16 and obtained by the formulae above are

uf =3 kg/m3 uM0 =6·16 kg/m3 t1 =0·8 h
s =11·5 kg/(m2h) uM =5·46 kg/m3 t2 =7·1 h
Qu0 =3500 m3/h uu0 =7·96 kg/m3 τ2 =2·3 h
Qu =4298 m3/h uu1 =7·63 kg/m3 2·2 m=1·1xsb0 <xsb

um0 =1·61 kg/m3 uu∞ =7·56 kg/m3 <1·3xsb0 =2·7 m, Equation (8)
um =2·23 kg/m3

A numerical simulation is shown in Figure 18.
Suppose now that the initial sludge blanket is located near the bottom, such that SBL

reaches the bottom before τ1. Then lower concentrations than um reach the bottom and Con-
dition 	 implies that the underflow concentration will be lower than the previous value uu∞
shown in Figure 16. In such a case the solution can be described (qualitatively) by cutting off
the solution shown in Figure 17 at a level between x =xsb0 and x =x5 and defining the cut-
ting level as the new bottom level. The boundary concentrations at the bottom all imply, by
[2, Equation (6)], that there is no wave (characteristic or discontinuity) emanating from the
bottom upwards. To demonstrate this, we perform a simulation with the same data as above,
except that we let xsb0 = 3·75 m; see Figure 19. In this example the SBL reaches the bottom
without any interaction with x2. This implies that the bottom concentration is uD =um0 and,
by [2, Equation (6)] and (4), that the underflow concentration f (um0)/qu = 6·87 kg/m3 (at
t ≈1 h) is lower than the asymptotic value uu∞ =7·56 kg/m3.

In the latter circumstances the settler cannot be kept in optimal operation by performing
this type of direct control action. Since we cannot compute x3 or τ1 exactly, a safe margin
above the bottom for the SBL is obtained if the initial one satisfies

x1(τ2)≤D ⇐⇒ xsb0 ≤
(

1− f ′(uM0)

f ′(um)

)
D, (9)

which yields xsb0 ≤0·76D=3·04 m with the present data. Numerical simulations yield that the
actual boundary depth is 3·32 m.
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Figure 18. Numerical simulation of a response to DCL1 as (uf , s)∈O(Qu0)∩�2(Qu). Note the jump in uu(t) at t =0.

Consider DCL2, which differs from DCL1 only if (uf , s)∈�3 in the sense that Qu is then
set to the slightly lower value Q̃u such that (uf , s)∈�4(Q̃u). This means that the settler is crit-
ically loaded, but optimal operation cannot be maintained in the new steady state. The solu-
tion is then as the one in [2, case U2a, s < f (uM

0 )]. (If (uf , s) ∈ U2a, i.e., the feed point lies
below the graph of f , then Qu is actually slightly less than Qu0.) If the SBL lies close to
the bottom, DCL2 may be advantageous over DCL1 since optimal operation may not be left
after a short time. However, in such a case it is easier to postpone any control action; see
Section 7.

6.6. (uf , s)∈O(Qu0)∩�1

Strategy DCL1 (= DCL2 = DCL3) means that Qu = Q̃u > Qu0 is chosen such that (uf , s) ∈
�1(Qu). Suppose first that Qu < ¯̄Qu. We obtain a solution that differs only slightly from the
one in Figure 17. Compared to Figure 16 the feed point is now located on the graph of f

to the left of um. The underflow concentration jumps directly down to uu1 =f (uM0)/qu. The
concentration on the right of x4 is uf <um and s =f (uf )<f (um)=f (uM) holds. (Note that
s may be less or greater than s0.) This implies that u∗

f > uM and the discontinuity x5 has
the positive speed x′

5(t)=Sf (uf , u
∗
f )=f ′(u∗

f ). Hence, x5 will reach the bottom at a finite time
point, at which the underflow concentration makes a jump down to uu∞ = f (uf )/qu = s/qu.
A numerical simulation in the case (uf , s)= (1·8,11·0) is shown in Figure 20.

If Qu ≥ ¯̄Qu, the solution will qualitatively be the same with um =uM =uinfl, however, opti-
mal operation is left immediately by definition.
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Figure 19. Numerical simulation of a response to DCL1 as (uf , s) ∈ O(Qu0) ∩ �2(Qu) and with an initial sludge
blanket near the bottom. Note the dip in the underflow concentration as the SBL reaches the bottom.
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Figure 20. Numerical simulation of a response to DCL1 as (uf , s)= (1·8,11·0)∈O(Qu0)∩�1(Qu) with Qu <
=
Q. Opti-

mal operation is left after 6·5 h.

6.7. (uf , s)∈�′
a

To maintain optimal operation as long as possible, the best remedy is to increase the control
variable as much as possible, i.e., to set Qu =Qf ⇔Qe = 0. This is strategy DCL1. Then we
obtain the slowest possible rising SBL; see the simulation in Figure 21.

There will not be any sludge blanket in the new steady state, which arises after a finite
time. The solution is similar to the one constructed in [2, Figure 21], however, with a sinking
SBL before t1 (as in Figure 17) and with u2 replaced by uf as the new concentration in the
thickening zone. The boundary concentration below the feed inlet is not um but higher. Since
s ≤ f (uM) (definition of �′

a) the initial boundary concentration below the feed level is u1,
defined by s =f (u1) and um <u1 ≤uM, cf. in [2, Figure 20 (left)]. (Note that on the boundary
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Figure 21. Numerical simulation of a response to DCL1 as (uf , s)= (8·3,10·5)∈�′
a ∩U2(Qu0 =3500) with Qu =Qf =

3577 m3/h. The pure liquid in the clarification zone is still (Qe =0). Optimal operation is left after 18 h. The settler
is slightly underloaded and after t ≈33 h uu =uf holds.

0 5 10 15 20 25 30 35

–1

0

1

2

3

4

Contours of u(x,t)

time (h)

de
pt

h 
(m

)

0 5 10 15 20 25 30 35
7.8

8

8.2

8.4

8.6

8.8
Underflow concentration

time (h)

Figure 22. Numerical simulation of a response to strategy DCL2 as (uf , s) = (8·3,10·5) ∈ �′
a ∩ U2(Qu0 = 3500) ∩

�4(Q̃u = 3414). Optimal operation is left after 11 h. In the new steady state the settler is critically loaded with
uu =8·7 kg/m3.

between �′
a and �′

b, s =f (uM)⇔u1 =uM holds and the initial expansion wave from the feed
level reaches up to the feed level.) The rising sludge blanket has the negative speed Sf (u1, u

∗
1).

After it has reached the feed level (at t ≈ 18 in Figure 21) the new boundary concentration
below the feed level is u2 >uM0 ([2, Figure 20 (right)]), and this is eventually spread all over
the thickening zone.

As a comparison, we show in Figure 22 the simulation for the case when strategy DCL2 is
invoked: the control variable is set to Qu =�−1

4 (uf , s)= Q̃u =3414. Clearly, optimal operation
is left earlier than in Figure 21.
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Figure 23. Numerical simulation of a response to DCL1 as (uf , s) = (8·3,12·0) ∈ �′
b ∩ O(Qu0) and Qu = Qf =

4088 m3/h. Note that the new underflow concentration, after 18 h, is uu =uf =8·3 kg/m3.

6.8. (uf , s)∈�′
b

By analogy with Section 6.7 the best remedy (to keep optimal operation as long as possible)
is to let Qu = Qf , which corresponds to DCL1 = DCL2 = DCL3. Since s > f (uM), the new
boundary concentration below the feed level is the high concentration uf > uinfl directly, cf.
[2, Figure 23]. Optimal operation is therefore left immediately. The solution is demonstrated
by the numerical simulation in Figure 23. Compare with the solution in [2, Figure 25].

7. Optimal control strategies of step inputs

7.1. Operating chart for optimal control of step inputs

Given a settler in optimal operation in steady state and a step input, we have in [2] seen the
response without any control action, and in Section 6 the response to a direct control action.
With this information we can obtain optimal control strategies with respect to the control
objectives CO1–CO3 defined in Section 4. Therefore, we combine the information in the oper-
ating chart for direct control of step responses in Figure 6 with the operating chart for step
responses and the safe and dangerous regions; see Figure 24 here and [2, Theorem 4.1]. Since
the settler is not in optimal operation when Qu ≥ ¯̄Qu, see for example Section 6.6, we have
to divide �1 into two disjoint subsets, by analogy with the division of �3 (see (3)):

�1a =�1 ∩{
(u, y) :y <fb(u)+ ¯̄quu

}
and �1b =�1 \�1a.
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Figure 24. Operating charts from [2] shown with the initial value Qu0. Left: Operating chart for step responses from
optimal operation. Right: The ‘dangerous’ and ‘safe’ regions of the operating chart corresponding to whether opti-
mal operation is left immediately or not after a step input. Referring to the control objects in Section 4 note that
L3 = ∂S ∩ ∂D.

Figure 25. Operating chart for optimal control of step inputs. The regions are shown by solid lines. The sets refer
to the initial value Qu0, i.e., D≡D(Qu0) etc. Given a step change with (uf , s) in a region, the optimal control strat-
egies are shown in Table 2.

The resulting operating chart is shown in Figure 25 and in Table 2 we give an overview of the
optimal control strategies. For CO2 and CO3 a lower bound umin

u on the underflow concen-
tration is prescribed. It is reasonable to assume that umin

u ≤uu0 holds. Unless otherwise stated,
we therefore assume that umin

u =uu0 holds as the worst case. In the following sections we com-
ment upon the optimal strategies in Table 2 for each region.

7.2. (uf , s)∈ (
�1(Qu0)∪U1(Qu0)

)∩�1

Without any control action the sludge blanket will decrease and after a finite time reach the
bottom, see [2, Sections 4.2 and 4.4]. Note that DCL1 = DCL2 (Qu is decreased to Q̃u). This
control action results in the slowest possible decrease of the SBL and implies that CO1 is ful-
filled. A critically loaded settler is obtained as shown in Section 6.4. Since Qu is decreased,
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Table 2. Survey of optimal strategies for control of step inputs. Each case should be read from the left
to the right. ‘Optimal operation maintained until’ refers to the control action stated in the adjacent left
column. ‘Delayed’ means that a single step-control action is performed at a later time point. PCC is
specified in the text in each case.

Region in Optimal con- Optimal Second Optimal Optimal
operating trol action to operation control control operation
chart meet CO1 and maintained action to action to maintained
(Figure 25) first action until meet meet until

of CO2 CO2 CO3

(�1 ∪U1)∩�1 DCL1 SBL meets
bottom

PCC PCC third control
action

U1 ∩ (P ∪ �2 ∪
�3)

DCL1 or
delayed L1

t =∞ none DCL1 or
delayed L1

t =∞

O2a ∪ (S ∩�3) DCL1 if (9) is
true, else
delayed L1

t =∞ none delayed L1 SBL meets
feed level

D ∩ (�2 ∪�3a) (9) is true:
DCL1

t = ∞ if (9) is
true

none PCC t =0 if
umin

u =u0

(9) is false:
DCL3. If SBL
does not meet
bottom, 2nd
action to meet
CO1: L1

SBL does not
meet bottom:
t =∞

L1

SBL meets
bottom

PCC

�′
a DCL1 SBL meets

feed level
Qu =Qu0

if (uf , s)

∈ S, else
L3

delayed L2 SBL meets
feed level if
(uf , s)∈S,
else t =0

D ∩�1a DCL1 SBL meets
bottom

PCC delayed L1 t =0

�1b ∪P2 ∪
�3b ∪�′

b

CO1: DCL1;
CO2: see CO3

t =0 none delayed L1 t =0

uu(t)=uu0 =umin
u holds until the SBL reaches the bottom, i.e., as long as optimal operation is

maintained. Therefore, CO2 and CO3 are equivalent. After the SBL has reached the bottom,
the underflow concentration drops below uu0. To fulfil CO2, Theorem 4.1 yields that Qu should
be lowered further to Qmax1

u just before the SBL reaches the bottom. Then there will be a rising
discontinuity in the clarification zone. Just before this one reaches the effluent level, Qu should
be set back to Q̃u to keep ue =0 and satisfy CO2 and CO3. This is demonstrated in Figure 26.
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Figure 26. Optimal PCC with respect to CO2 and CO3 as (uf , s)= (1,7·5)∈U1(Qu0)∩�1. Optimal operation is left
at t =11 h but uu(t)≥uu0 =7·96 kg/m3 until t =17 h instead of t ≈11·2 h as in DCL1; see Figure 15.

7.3. (uf , s)∈U1(Qu0)∩ (P ∪�2 ∪�3)

In Sections 6.2 and 6.3 we have seen that DCL1 has a stabilizing effect on the SBL, the
mass is unchanged and the underflow concentration makes a step increase directly and then
stays constant. Since (uf , s)∈S, there is an option to wait a while before a control action is
made; see the step response in [2, Section 4.2], which shows that the underflow concentration
is constant and the mass and the SBL decreases. Performing L1 at a time point tc before the
SBL reaches the bottom (which occurs at t =Tu = (m−m0)/(s − s0); see [2]), we obtain a new
steady state with a mass and SBL, both of which are lower the closer tc is to Tu. The mass in
the settler can actually be set to a fixed value below m0 and above ADum depending on the
choice of tc. This is demonstrated with a simulation in Figure 27, in which the initial data
and step change are the same as in Section 6.2. To ensure that the new steady state has a
SBL above the bottom, tc cannot be too near Tu, because of the transient that appears after
tc. Finally, we conclude that all these control actions satisfy CO1, CO2 and CO3.
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Figure 27. Optimal control with respect to CO1, CO2 and CO3 as (uf , s) = (2·5,6·0) ∈ U1(Qu0) ∩ �2. A control
action, Qu = Q̃u =1908, is performed at t = tc =2 h instead of t =0 as in Figure 10.

7.4. (uf , s)∈O2a(Qu0)∪ (S(Qu0)∩�3
)

If (9) is satisfied, CO1 is fulfilled by DCL1 as shown in Section 6.5. In that section we have
also seen that, if the sludge blanket lies close to the bottom, DCL1 may imply that optimal
operation is left after a short time. This is because Qu has been increased too much. DCL2
may be (only in the case (uf , s)∈�3) slightly more advantageous but it is easier to wait with
any control action. Even for a higher-located sludge blanket a step increase in Qu may vio-
late CO2 and CO3, since the underflow concentration decreases directly with a step. Waiting
a while before performing the control action resolves this. During the step response the mass
increases initially and the SBL rises after a while, see [2, Sections 4.7–4.10]. The solution is
qualitatively the same in all those cases up to t =Tcl, which is the time point when particles
start to enter the clarification zone. Performing the control action L1 at tc ∈ (0, Tcl), the settler
remains in optimal operation. Hence both CO1 and CO2 are fulfilled. Assume that the ini-
tial data and step input are the same as in [2, Section 4.7.1]: Qu0 =2000, s0 =6·25, uf =5·52,
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Figure 28. Optimal control with respect to CO1 and CO2 (optimal operation is maintained) as (uf , s)= (5·52,8·79)∈
O2a(Qu0 = 2000). Qu is set to Q̃u =L−1

1 (uf , s)= 3023 at tc = 0·5 h. Note that after 8 hours the mass and SBL are
approximately the same as the initial values.
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Figure 29. The same data as in Figure 28 but with tc =4 h.

s =8·79. Then Q̃u ≈3023 m3/h and simulations in the cases tc =0·5 h and tc =4 h <Tcl ≈4·8 h
are shown in Figures 28 and 29, respectively.

Since there is a drop in the underflow concentration at t = tc, CO3 is fulfilled by perform-
ing the L1-step just before the discontinuity reaches the effluent level; see Figure 30.

7.5. (uf , s)∈D(Qu0)∩ (�2 ∪�3a)

Since (uf , s) ∈ D we know from [2, Theorem 4.1] that optimal operation is left immediately
unless a direct control action (Qu is increased) is performed. In Section 6.5 we have seen that
if (9) is satisfied, DCL1 implies that optimal operation is maintained and an estimation of the
depth of the new SBL is given by (8). Any increase in Qu from Qu0 will imply a decreasing
SBL initially. Hence, if SBL is close to the bottom, a high value of Qu is needed. The highest
possible value (to maintain optimal operation) corresponds to a feed point on the boundary
between D and S, i.e., Qu = L−1

3 (uf , s). Hence, strategy DCL3 will either maintain optimal
operation or imply the slowest sinking SBL possible to satisfy CO1. This is demonstrated in
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Figure 30. Initial data as in Figures 28 and 29. Optimal control with respect to CO3 with the control action L1 at
tc =7 h. Note that ue =0 for t >0. The discontinuity in the clarification zone stays just below the top of the settler.
In the new steady state the particles in the clarification zone is thus still.

Figure 31, where the initial data are the same as in Figure 19. If the initial depth of the SBL
is slightly less, optimal operation can be maintained substantially longer by performing an L1-
step at a later time point; see Figure 32.

To satisfy CO2 Theorem 4.1 yields that Qu should be decreased to Qmax1
u = Qu0 as the

SBL reaches the bottom. Then uu =uu0 =umin
u , but there will be a rising discontinuity in the

clarification zone. Since the situation is similar to satisfying CO3, see below, we do not show
any solution in this case.

From the proof of Theorem 4.1 we can also conclude that any step increase to Qu >Qu0

will directly result in a step decrease in the underflow concentration. Hence, for any (uf , s)∈D,
there is no control action that can result in optimal operation subject to uu ≥ umin

u . Opti-
mal operation must be left directly and hence CO2 = CO3. To satisfy this objective, the first
control action, which is L3, has to be delayed until just before the rising discontinuity in
the clarification zone reaches the effluent level; see Figure 33. After the discontinuity in the
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Figure 31. DCL3 with Qu = 3876 in order to satisfy CO1 as (uf , s) = (3,11·5) ∈ D(Qu0 = 3500) ∩ �2 and xsb0 =
3·75 m; cf. Figure 19. Optimal operation is left during a short period around t ≈ 2 h as the SBL reaches the
bottom.

thickening zone has reached the feed level, there is a small rising wave in the clarification
zone, which will yield particles in the effluent unless L1 is invoked.

Now suppose that umin
u is lower than the initial value, say 7·7 kg/m3. Then CO3 can be

fulfilled with optimal operation until the SBL moves up into the clarification zone. Just before
it reaches the effluent level, the control variable is set according to L1; see Figure 34.

7.6. (uf , s)∈�′
a

From the solutions presented in [2, Sections 4.8.1 and 4.8.3] and in Section 6.7 here we can
conclude that DCL1 is the optimal control action to satisfy CO1. This means that Qu is
increased to its physically maximal value for the given feed point, i.e., Qu =Qf . This implies
that the underflow concentration makes a step decrease directly. Hence, if umin

u = uu0, then
CO2 is not satisfied. The initial underflow concentration can be brought back by letting
Qu = Qu0 when the SBL reaches the feed level, provided (uf , s) ∈ S(Qu0). This is demon-
strated in Figure 35, in which we use the same numerical data as in Section 6.7. If (uf , s)∈
D(Qu0), Qu cannot be lowered to Qu0. The lowest value required to maintain optimal oper-
ation is obtained with action L3 just before the SBL reaches the feed level or just before the
rising discontinuity in the clarification zone reaches the effluent level, whichever occurs first.
The solution is not substantially different from the one in Figure 35.

In order to satisfy CO3, Qu must not be increased because of the constraint uu(t)≥umin
u .

Hence, if (uf , s) ∈ S ∩ (U(Qu0) ∪ �4
)
, the control variable should not be changed at all. If
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Figure 32. Optimal control with respect to CO1 and CO2 as (uf , s) = (3,11·5) ∈ D(Qu0 = 3500) ∩ �2 and xsb0 =
3·70 m. DCL3 is followed by an L1-step at t =16 h.

(uf , s)∈S ∩O(Qu0), an L2-action is performed just before particles reach the effluent level to
prevent an overflow, cf. Figure 30. If (uf , s)∈D, optimal operation and uu(t)≥ umin

u cannot
be satisfied together. Then CO3 is met by a delayed control action L2 just before overflow
occurs; see Figure 36.

7.7. (uf , s)∈D(Qu0)∩�1a

As presented in Section 6.6 DCL1 is the optimal control action to satisfy CO1; see Figure 20.
Optimal operation is left as the SBL reaches the bottom. Optimal operation is inevitably left
at this time point. To satisfy CO2, the SBL should be prevented from reaching the bottom
by decreasing Qu from its present value Q̃u. This will yield a rising discontinuity in the clar-
ification zone, of which the speed is greater the lower Qu is. Since the concentrations above
and below the sinking SBL are uf and u∗

f , respectively, the SBL becomes stationary for the

Qu that satisfies Sf (uf , u
∗
f )=0⇔f (uf ;Qu)=f (u∗

f ;Qu)⇔Qu =−Af ′
b(u∗

f ) (note that Qu < ¯̄Qu
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Figure 33. Optimal control with respect to CO2 and CO3 with umin
u = uu0 = 7·96 kg/m3 as (uf , s) = (3,11·5) ∈

D(Qu0 =3500)∩�2 and xsb0 =3·70 m. Step-control actions with respect to L3 and L1 are performed at t =7 h and
t =13·8 h, respectively.
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Figure 34. Optimal control with respect to CO3 with umin
u =7·7 kg/m3 as (uf , s)= (3,11·5)∈D(Qu0 =3500)∩�2 and

xsb0 =3·70 m. DCL3 is followed by L1 at t =20 h.
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Figure 36. Optimal control with respect to CO3 as (uf , s) = (7·7,12) ∈ �′
a ∩ D(Qu0 = 3500). An L2-control action

with Qu = Q̃u =4110 is performed at t =7 h.

by the definition of �1a). Hence, set Qu =−Af ′
b(u∗

f ) just before the SBL reaches the bottom,
see Figure 37, in which we have used the same initial data as in Figure 20. To keep ue =0 we
set Qu =Q̃u just before an overflow occurs. To satisfy CO3 with umin

u =uu0 an L1-step should
be performed just before the SBL reaches the effluent level; see Figure 38.

7.8. (uf , s)∈�1b ∪P2 ∪�3b ∪�′
b

This region is a subset of D(Qu0), which means that Qu must be increased so that (uf , s)∈
S(Qu), i.e., the control action L1 = L2 = L3 should be performed to prevent particles from
entering the clarification zone. This implies that Qu ≥ ¯̄Qu if (uf , s) ∈ �1b ∪ P2 ∪ �3b (see
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Figure 37. Optimal control with respect to CO2 as (uf , s)= (1·8,11·0)∈D(Qu0 =3500)∩�1a. DCL1 with Qu = Q̃u =
4631 is followed by Qu =−Af ′

b(u∗
f )=3781 at t =6·3 h and Qu = Q̃u at t =9·3 h.
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Figure 38. Optimal control with respect to CO3 as (uf , s)= (1·8,11·0)∈D(Qu0 =3500)∩�1a. The control action L1
with Qu = Q̃u =4631 is performed at t =2 h.
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Sections 6.5 and 6.6) and Qu = Qf for (uf , s) ∈ �′
b (see Section 6.8). In both cases optimal

operation is left immediately. As is demonstrated in those sections, DCL1 (= DCL2 = DCL3)
implies CO1 (ucl =0). Furthermore, CO2 and CO3 are equal. To satisfy these objectives, i.e.,
maintaining uu = umin

u = uu0 as long as possible, the first step-control action (L1 = L2 = L3)
should be taken just before the SBL reaches the effluent level to keep ue =0.

8. Conclusions

The main purpose of a clarifier-thickener unit is that it should produce both a high under-
flow concentration and a zero effluent concentration. The main difficulty in the control of
an ideal clarification-thickening process is that it is nonlinear with complex relations between
concentrations and volume flows via the solution of a partial differential equation. The input
variable is the feed point (uf , s) consisting of the feed concentration and flux. The control
variable is the volume flow Qu of the underflow stream.

In order to approach the control problem, control objectives are defined in Section 4. In
these, the concept of optimal operation is fundamental. This relates to a specific type of solu-
tion of the model partial differential equation, where there is a sludge blanket level (SBL),
which is a discontinuity in the thickening zone separating low and high concentrations. Theo-
rem 4.1 states that during optimal operation the underflow concentration can be kept above a
given lower bound by keeping the control variable Qu below a specific value, which depends
on the bound. This value can be obtained graphically in the operating chart for control of
steady states; see Figure 4. This also shows the interval of possible underflow concentrations
during optimal operation. Based on the knowledge about the control of steady-state solutions
in [1] and the step responses in [2], control strategies were introduced in Section 5. They state
how the control variable Qu should be set as a function of the feed point and time to meet
each control objective.

In this paper we have focused on the control of the process for each possible step input and
with respect to three control objectives. The first stage is to investigate the responses when a single
step-control action is performed directly. The control variable is set to a value corresponding to
a desired steady state (if possible optimal operation, otherwise a critically loaded settler). Such
responses were classified in Section 6, where the operating chart in Figure 6 is divided into seven
regions corresponding to the qualitatively different solutions. Unfortunately, it turns out that this
single-step strategy is not always sufficient to satisfy the control objectives. For example, if the initial
SBL is located near the bottom of the vessel and there is (even a small) step-input change such that
the settler is going to be overloaded, then a direct control action may imply that optimal operation
is left after a short time as the SBL reaches the bottom; see Figure 19.

The main results of the paper are the optimal control strategies presented in Section 7 by
means of the operating chart in Figure 25 and the accompanying Table 2. This chart also
contains seven regions, which, however, are different from the previous ones (Figure 6). An
overall conclusion is that, for any step input, piecewise constant control with at most three
step-control actions is sufficient to meet any of the control objectives.

All theoretically possible feed concentrations have been considered. In reality, only lower
or intermediate feed concentrations are of interest. It is therefore interesting to note that, for
feed concentrations in an arbitrary small interval around the characteristic concentration um,
five of the seven regions of the optimal-control chart in Figure 25 are possible. This really
illustrates the nonlinearity of the process and the difficulty in controlling it.

For all step responses with unchanged Qu the underflow concentration and the solution
in the bottom part of the thickening zone are unchanged until possibly the SBL reaches
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the bottom (see [2]). All solutions in Section 6 can be regarded as step responses when also
Qu makes a jump. An interesting conclusion is then that the underflow concentration always
makes a jump at t = 0 but the solution in the bottom part of the thickening zone changes
only continuously until possibly the SBL reaches the bottom.

For intermediate feed concentrations and the two most common step inputs, the follow-
ing can be concluded referring to the optimal-control chart in Figure 25. Firstly, if (uf , s)∈
U1 ∩ (P ∪�2 ∪�3), the settler is prevented from underloading by lowering the control variable
Qu. It turns out that this has a stabilizing effect on the SBL; the mass is unchanged and the
underflow concentration makes a step increase directly and then stays constant. An explicit
relation between the initial and the new SBL has been given; see (6) and Figure 9. Secondly,
if (uf , s)∈O2a ∪ (S ∩�3), the prevention of an overloaded settler is obtained by increasing Qu.
The sludge blanket declines initially and may reach the bottom if the initial depth is too low;
see Figure 19. A safe margin is given by the inequality (9). Even for an initially higher SBL
a step increase in Qu may be disadvantageous since the underflow concentration decreases
directly with a step and this may violate the given control objective. To satisfy the control
objectives, one should delay any control action for a while; see Figures 28–30. In this case
the initial SBL can actually be recovered with only one control action; see Figure 28.

A natural continuation of this series of papers is to generalize the results on step responses
and control of these to a dynamic input and to present a regulator for the process.

The results presented in this series of papers have been obtained for ideal non-flocculated
suspensions that obey Kynch’s assumption. Many real slurries consist of flocculated suspen-
sions that show a compressible behaviour at high concentrations and it would be interest-
ing to see how the present results alter when compression is taken into account. The model
equation will then have an additional diffusion term, which is non-zero only for concentra-
tions above a critical concentration. Extensive analyses of such a strongly degenerate para-
bolic equation have been performed lately and, what concerns the modelling of continuous
sedimentation in clarifier-thickener units, culminated in the recent paper [12] by Bürger et al.
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